Exam Seat No:_____

_____ **C.U.SHAH UNIVERSITY Summer Examination-2016**

Subject Name : Advanced Complex Analysis

Subject Code : 580	C04CAC1	Branch: M.Sc (mathematics)		
Semester : IV	Date 05/05/2016	Time : 2:30 pm To 5:30 pm	Marks : 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions .	(07)
	a. b.	What is path? Define function of bounded variarion.	(02) (02)
	c.	Evaluate $\oint_C \frac{z}{z^2 - 1}$ where C: $ z = 3$	(02)
	d.	Define closed rectifiable curve.	(01)
0.2		Attempt all questions	(14)
Q-2	a.	Let $\gamma:[0,1] \to \mathbb{C}$ be closed rectifiable curve and $a \notin \{\gamma\}$ then show that $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-a}$ is an integer.	(07)
	b.	Let γ be a closed rectifiable curve in \mathbb{C} then show that $n(\gamma; a)$ is constant on every component of $\mathbb{C} \sim \{\gamma\}$.	(07)
0-2		Attempt all questions	(14)
x -	a.	State and prove Cauchy's integral formula for derivative .	(07)
	b.	State and prove Morera's theorem.	(07)
Q-3	a. b.	Attempt all questions State and prove counting zero principle. Evaluate $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz$ Where $f(z)=(z^2+1)^3$ and $\gamma(t)=2e^{it}$, $0 \le t \le 2\pi$.	(14) (07) (04)

Page 1 || 2

	c.	Evaluate $\frac{1}{2\pi i} \int_{ z =2} \frac{2z+1}{z^2+z+1} dz$	(03)
		OR	
Q-3	a.	Let f be an entire function show that infinity is a pole of order m of f if and only if f is a polynomial of degree m.	(07)
	b.	State and prove argument principle.	(05)
	c.	Write the statement of open mapping theorem.	(02)
		SECTION – II	
Q-4		Attempt the Following questions .	(07)
	a.	Define convex set.	(02)
	b.	Write the statement of Casorati-Weierstrass theorem.	(02)
	c.	What is conformal map ?	(02)
	d.	Define equicontinous set in $C(G, \Omega)$.	(01)
Q-5		Attempt all questions	(14)
	a.	Prove that a map f:[a,b] \rightarrow R is convex iff $\frac{f(t)-f(s)}{t-s} \leq \frac{f(u)-f(t)}{u-t}$ whenever s,t,u \in [a b] and s $\leq t \leq u$	(07)
	h	State and prove Arzela – Ascoli theorem	(04)
	C.	State Hadamard's three circles theorem	(03)
	C.	OR	(00)
0-5		State and prove Montel's theorem	(14)
Õ-6		Attempt all questions	(14)
	a.	Prove that If $ a < 1$, then φ_a is one –one map of D onto itself and the inverse of	(07)
		φ_a is φ_{-a} further φ_a maps the boundary of D onto itself.	()
	b.	State and prove Riemann mapping theorem.	(07)
		OR	
Q-6		Attempt all Questions	
	a.	If $ z < \frac{1}{2}$, then show that $\frac{1}{2} z < \log(1+z) < \frac{3}{2} z $	(07)

b. Let z_n be sequence of complex number with Re $z_n > 0$ for all then show that the product $\prod_{n=1}^{\infty} z_n$ converges to a non zero complex number iff the series $\sum_{n=1}^{\infty} \log(z_n)$ converges. (07)

Page 2 || 2